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LE’ZTER TO THE EDITOR 

Memory maintenance in neural networks 

S Shinomoto 
Department of Physics, Kyoto University, Kyoto 606, Japan 

Received 14 October 1987 

Abstract. A rule of synaptic modification in neural networks is proposed under a principle 
which minimises ‘free energy’ with synaptic strength roughly bounded. The rule does not 
allow the overloading of memories which can be a cause of failure in memory process and 
it stabilises the synaptic connection, provided that memories are properly stored. 

Interest in network models of memory functions in the brain has concentrated upon 
suitabale forms of information storage and information retrieval. The forms of informa- 
tion storage may be classified into two groups, localised and extended, in which each 
bit of information either corresponds to a firing of a specific neuron or to a firing 
pattern of a set of neurons (see Hopfield 1982). There have also been several proposals 
for methods of recording information for each of the localised or extended storage 
forms. We thus have several candidates for memory functions among neural network 
models. A unit qualified as a memory should be able to record, maintain and retrieve 
environmental information. The recording of information in the above-mentioned 
forms is due to the plasticity of synaptic couplings. On the other hand, each synaptic 
coupling should be fixed before the system overloads the memories and some catas- 
trophic deterioration (Hopfield 1982, Amit er a1 1985, 1987) occurs. For this purpose, 
one might introduce an external fixation unit for the synaptic couplings. But how does 
the external unit know the stage of storage in the memory process? The task would 
be complex. There might be some intrinsic mechanism such that a network spon- 
taneously ceases to alter its synaptic strength. I have tried to find a plasticity rule in 
line with the latter hypothesis for the extended form of information storage. In the 
present letter, I will present an ad hoc principle which meets the hypothesis. 

Both neuronic states and synaptic couplings are assumed to be variable in time. 
It is physiologically plausible, however, to suppose that a timescale of synaptic 
modification is sufficiently large compared to that of neuronic modification. This 
separation of timescales allows us to employ the adiabatic approximation (Caianiello 
1961, Takeuchi and Amari 1979) in which synaptic connection is regarded as permanent 
during short-term dynamics of neurons. Against the hierarchy in which synaptic 
connection dominates neuronic dynamics, I will introduce a feedback, where the 
resulting neuronic states adiabatically modify the synaptic connection which rule 
themselves. The self-organisation of systems composed of two different species with 
comparative difference in control is also of current interest. 

Although some dynamical characteristics of networks of permanent asymmetric 
connection have been clarified (Amari 1971, 1974, Shinomoto 1986,1987, Sompolinsky 
and Kanter 1986, Amit 1987) measure-theoretic knowledge is as yet insufficient for the 
present purpose. I will restrict the present investigation within symmetric connections 
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to rest on a knowledge of their equilibrium properties (Amit et a1 1985, 1987). The 
advantage of this restriction is the existence of a unique characteristic function which 
is called the energy or 

where K ,  is the synaptic connection from j to i. The connection is assumed to be 
symmetric, { K,/ = K , , } ,  with { K , ,  = 0). Each neuron is supposed to be a binary element 
whose representation is symmetric: s, = +1 (firing) or -1 (resting). I will introduce 
the stochastic threshold rule (Little 1974) which is to readjust each state iteratively by 
a probability p ( s , )  = l / [ l  +exp(AE,/ T ) ] ,  where AE, = sl(XJ K,,s,). Here, T is 'tem- 
perature', indicating the degree of noise against downhill motion in energy surfaces. 
An invariant measure or an equilibrium distribution function of the state s = (s , ,  . . . , s,) 
for this rule is p(s)ccexp[-E(s)/T].  A standard scheme of the extended form of 
information storage is the autocorrelation matrix memory or the Hopfield model 
(Hopfield 1982) whose connection is 

where s"' = (ST,. . . , SE) is a firing pattern of the mth memory and M is the number 
of memories (m = 1, .  . . , M ) .  I have chosen here a numerical factor l / m  in order 
to make the coupling strength IC,,/ independent of the number of memories, which 
are given independent of each other. There are global attractor basins for each of the 
memory patterns, provided that the number of memories M is sufficiently small 
compared to the number of elements N and the temperature T is sufficiently small 
compared to v%f/ N. Detailed characteristics were clarified by the statistical 
mechanical study by Amit et a1 (1985, 1987) for the system of an infinite number of 
elements ( N  + CO).  A network of a large but finite number of elements ( N  >> 1) keeps 
the characteristics of the infinite system. 

The most elementary rule of synaptic modification needed to construct a connection 
similar to the Hopfield model is the generalised Hebb rule: 

AK,] = sFsJ" (3) 

where s m  is a pattern to be acquired by the network. The complete autocorrelation 
matrix is obtained if the acquisition begins from a tabula rasa { K, = 0} and it ceases 
at a reasonable stage, 1 S rn 6 M << N. In  the absence of an external fixation unit, 
however, the system overloads the memories, M - N, and then catastrophic deterior- 
ation of memories (Amit et a1 1985, 1987) occurs. In order to avoid the deterioration 
and to keep each synaptic strength bounded, palimpsest schemes (Nadal et a1 1986, 
1987, Parisi 1986, Mizard et a1 1986) were proposed. A representative form is 

(4) AKIJ = - y K ,  -k s Y s ~ .  
The system has a kind of steady state in the continual presentation of patterns. The 
statistical mechanics of the system in an asymptotic regime was solved by Mizard 
et a1 (1986) to reveal the existence of the threshold value yc such that the system 
acquires a stationary capacity for y >  yc.  The palimpsest models are discussed by 
Nadal et a1 (1987) in relation to the behaviour of human short-term memory. 

Rules such as (3) and (4) by themselves are not able to maintain the acquired 
memories for a long time. The mechanism of information storage in human long-term 
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memory, which may even last throughout a lifetime, is of current interest. I introduce 
here a minimisation procedure of an ad hoc cost function. For a choice of the cost 
function, I take the following plausible assumptions into account: 

( i )  the strength of synaptic coupling (K,I is roughly bounded by a physiological 
structural constraint; 

(ii) the rule of synaptic modification does not depend on the number of temporarily 
stored memories; and 

(iii) information for modification of each of the synaptic couplings is only available 
locally. 

I will choose cost functions for each of assumptions (i) and  (ii). The choice will 
be checked a posteriori by examining the plasticity rule deduced from the sum of the 
cost functions in the light of assumption (iii). 

A possible form of a cost function in relation to (i) may be U = $ 2 , Z J  1 K,,12. The 
one in relation to (ii) may be a general characteristic function of networks of symmetric 
connections. Any functional of E ( s )  can be a candidate for the latter cost function. 
Almost all functionals, however, d o  not satisfy assumption (iii), i.e. the resultant 
plasticity rules are not local. An exceptional functional which will satisfy criterion 
( i i i )  is the free energy F = - T In(Tr . exp( - E /  T ) ] ,  where Tr. represents the summation 
over all patterns of { s a } .  The total cost function is the sum of them, r = F + yU, where 
y is the parameter indicating the relative weight between F and U. The variation of 
the total cost function with regard to the coupling is 

" = - A K y [ ( s , s j ) ~  - yKIJ] ( 5 )  
where ( . . . ) represents a thermal average in the system characterised by temporal 
values of { K, , /  T } .  I will take a unit T = 1, without loss of generality. A minimisation 
procedure of the cost function r provides a rule of synaptic modification: 

AK,] = - y K ,  + ( s , sJ )K .  ( 6 )  
The rule (6) keeps a local form which meets assumption (iii). The above rule, seemingly 
similar to (4), however, has a completely different meaning because the second term 
in (6) is not simply a presented pattern, but an  average over 'autonomous' states 
organised by the stochastic rule implemented by the temporal connection itself. I will 
assume that the network is also subjected to infrequent renewal in which neuronic 
states are clamped at a pattern of environmental information. The relaxation process 
after the clamping corresponds to the information processing. It would be possible to 
choose the frequency of clamping sufficiently small to keep the ergodicity in which 
the ensemble average can be replaced by the time average. Furthermore, the renewals 
would play a part in avoiding the non-ergodicity which will be mentioned later. 

By a suitable choice of the parameter y,  the cost function r may have a number 
of local minima in a ( N (  N - 1)/2)-dimensional space of the variables { K , } .  To 
get a glimpse of this, I will show that couplings similar to the Hopfield model {C , / }  
for a given set of memories may actually be stable solutions of ( 6 ) ,  provided that 
a = M / N < < 1 .  

An introduction of a new set of variables {B,]) by K ,  = B,]C, leads equation (6) to 

( 7 )  
where each C,, defined by equation (2) is supposed non-vanishing. Let us investigate 
a case where temporal values of multipliers { B,]} are uniform, or  { B,] = B } .  Then the 
multiplier B is regarded as a n  inverse of the temperature for a system of the connection 
{C,} and one can estimate the correlation (s,sI) by making use of the statistical 

= -yBIJ + ( ' t S J ) B c /  c#j 
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mechanical knowledge from Amit er al(1985,1987). The system has three characteristic 
phases in parameter space spanned by (Y and B. The first is a paramagnetic phase 
characterised by ergodicity and the absence of order. In this regime bounded by 
B < B,, the correlation (sJ,)  vanishes. The threshold B, as a function of a is Bg = 
& [ ( l + & ) m ] - '  in the present unit of {C,,}. The second is a spin-glass phase in 
B > B,. In this phase the system is non-ergodic and may have an exponential number 
of local equilibria. The third, which I will call a retrieval phase, is characterised by 
global attractor basins for each of the memory patterns. The retrieval phase is localised 
in the parameter region a << 1 and B > B, - O(J(  a /  N ) ) ,  and the phase transition from 
the glass phase is first order. Ergodicity missed in these glass and retrieval phases can 
be recovered by the previously mentioned infrequent renewals of the neuronic states 
by external inputs. If there is no specific correlation in the input patterns, (s,s,) is also 
expected to be exponentially small in the glass phase because there may be large 
amounts of uncorrelated local equilibria. In the retrieval phase, the correlation ( sJ , )  
is proportional to the average of sls, of all the memory patterns. Especially in a limit 
B >> B,, we may approximate the correlation by ( l / M )  2 ,  s y s y  = (l/m)C,,. The 
following are discussions on equation (7) in two limiting cases of (Y values. 

In the case a << 1 ,  the second term in (7)  as a function of B is vanishing for B < B, 
and is of O ( l / m )  for B >  B,, where B, is of O ( m / N ) .  The rule ( 7 )  provides a 
non-trivial stable fixed point B = B,-# 0, if the parameter y is chosen as y<< N /  M = a-' 
(see figure 1 ) .  Note that the inequality of y for the proper storage is opposite to the 
one for the rule (4). Irregularity of the second term of ( 7 )  for each ( i , j )  due to some 
inaccuracy of the memories would be present but would not cause a drastic change 
of the stability. The existence of a non-trivial fixed point implies a tremendous number 
of local minima in the cost function r, because memory patterns ( 2 )  can be chosen 
almost arbitrarily under rough orthogonality. Rule (7) also has a trivial stable fixed 
point, B = 0. Separation of two attractor domains implies that the desired coupling 
can be made up from a sufficiently large synaptic strength but nor from a tabula rasa, 
{ K , ,  = 01. 

. 
47 

d 

0 B,-0 lm/N I BF 
B 

Figure 1. Schematic representation of the second term in ( 7 )  in the case { E , ,  = E }  and 
a = M /  N << 1 .  The cross sections of the curve by a line yB are fixed points of ( 7 ) .  
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In  contrast to the above-mentioned case, the network with a B 1 does not have a 
retrieval phase for any value of E. The system is subjected only to the glass transition 
at E,-  O( l/m). We thus have only one fixed point, E = 0. Thus the Hopfield coupling 
with memories overloaded is unstable and each synaptic coupling is expected to decay 
monotonically. 

The non-ergodicity and exponentially large number of local equilibria in the glass 
phase of C,  with a b 1 or the randomly connected network, however, may be utilised 
for a construction of a proper memory with regard to external inputs. In this phase, 
there may be a local equilibrium sufficiently close to an arbitrary input pattern. The 
state of the system is temporarily locked in a basin of the local equilibrium until the 
next input arrives and while synaptic couplings are modified so as to deepen the basin. 
Thus, the system with strong and random couplings develops to record the input 
patterns. There may be a suitable frequency of presentation of the external information 
for this purpose. The problem in the learning stage is beyond the scope of the 
present study. The Boltzmann machine learning procedure (Ackley et af 1985, 
Sejnowski ef af 1986) which is not ‘autonomous’ as for the present rule would be 
worth considering. 

I have thus presented the rule of synaptic modification whose stable solutions are 
the Hopfield couplings. I recently noticed that an evolution equation similar to (6) 
had been proposed by Suzuki (1984) in another context, without any prediction of its 
solutions. In spite of the present findings of a set of solutions, the whole structure of 
the cost function is not yet revealed. There might be a set of stable solutions other 
than the ones presented in this letter. Findings from the other set of solutions would 
imply other forms of information storage. 

I would like to express my sincere thanks to Y Kuramoto, H Sakaguchi, K Nemoto, 
T Ikegami, P C Davis, S Amari, K Fukushima and R Hecht-Nielsen for informative 
comments. 
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